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X-ray fluorescence (XRF) microscopy is a powerful technique for quantifying the distribution of elements in complex
materials, which makes it a crucial imaging technique across a wide range of disciplines in physical and biological sci-
ences, including chemistry, materials science, microbiology, and geosciences. However, as a scanning microscopy tech-
nique, the spatial resolution of XRF imaging is inherently constrained by the x-ray probe profile and scanning step size.
Here we propose a dual-branch machine learning (ML) model, which can extract scale-variant features and bypass abun-
dant low-frequency information separately, to enhance the spatial resolution of the XRF images by mitigating the effects
of blurring from the probe profile. The model is trained by simulated natural images, and a two-stage training strategy
is used to overcome the domain gap between the natural images and experimental data. The tomography reconstruction
from enhanced XRF projections shows an improvement in resolution by a scale factor of four and reveals distinct internal
features invisible in low-resolution XRF within a battery sample. This study offers a promising approach for obtaining
high-resolution XRF imaging from its low-resolution version, paving the way for future investigations in a broader range
of disciplines and materials. ©2024Optica PublishingGroup under the terms of theOpticaOpen Access Publishing Agreement
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1. INTRODUCTION

Hard x-ray fluorescence (XRF) microscopy offers unique capa-
bilities in probing elemental distributions in advanced materials,
experiencing a marked increase in its application across diverse
material science domains [1]. This technique facilitates the concur-
rent mapping of multiple elements, resulting in intricate elemental
colocalization maps. A notable strength of XRF lies in its ability
to quantitatively analyze elemental distribution within materials,
shedding light on the structural and compositional nuances of
materials. The use of x-ray excitation significantly reduces the
Bremsstrahlung background compared with the background from
high-energy electrons [2], amplifying the elemental sensitivity of
hard XRF microscopy. Moreover, the high penetration depth of
x-rays, extending up to tens of microns, positions XRF micros-
copy as a premier choice for tomographic visualization of material
samples.

In addition, multimodal imaging, which combines XRF
microscopy with other imaging modalities, can provide com-
plementary scientific information. Facilities like the Hard X-ray
Nanoprobe (HXN) beamline at the National Synchrotron Light
Source II (NSLS-II) , Brookhaven National Laboratory [3,4],
enable the concurrent collection of XRF and ptychography data
in a fly-scan [5] mode. The same technique is also used in the
I12 beamline of the Diamond Light Source (DLS) [6] and the

Advanced Photon Source (APS) at Argonne National Laboratory
[7]. In this mode, the sample remains in continuous motion,
while the detector synchronously records data, thus eliminat-
ing the majority of the motion overhead. Fly-scan boosts the
throughput of ptychography and XRF imaging, especially for
three-dimensional applications and dynamic systems. However,
the XRF images measured in a fly-scan mode can be further blurred
by the movement of the sample and probe. Thus, it becomes chal-
lenging to resolve fine features within the samples, which hinders
the understanding of the detailed morphological and elemental
distributions that often critically determine their functionalities.

Enhancement of the XRF images to reveal detailed features
is feasible as the XRF intensity measurement can be modeled as
a convolution between the sample and probe integrated with
impacts from the scanning step sizes and the fly-scan mode.
Including multiple illumination modes into the ptychography
reconstruction engines has been proven to effectively decouple
the impact from continuous motion and recover both the probe
modes and the sample function [8]. As we know the scanning
step size and how the fly-scan is executed, together with the probe
function recovered from the ptychography reconstruction, we
can in principle generate the equivalent kernel in the convolution
process of XRF measurement, which makes it possible to conduct
a deconvolution and enhance the resolution of XRF images [9,10].
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Recently, the development of single image super resolution
by neural networks has shown significant advantage over tradi-
tional methods and provides a valid solution for this problem
[11,12]. Inspired from the sparse-coding-based method [13], one
of the representative external example-based traditional super
resolution methods relying on building a mapping between the
low-resolution dictionary encoded by cropped patches with over-
lapping and high-resolution dictionary. Dong et al. [12] designed
the super-resolution convolution neural network (SRCNN)
and achieved excellent performance over the traditional super
resolution methods [14]. Subsequently, advancements in deep
learning architectures lead to the development of deeper and wider
networks tailored for super-resolution tasks, such as enhanced
deep super-resolution (EDSR) [15] and the multi-scale deep
super-resolution (MDSR) [16]. EDSR focuses on optimizing
performance by removing unnecessary modules in conventional
residual networks, while MDSR is designed to handle multiple
scale factors within a single model, showcasing the versatility and
efficiency of these architectures.

Wu et al . [17] demonstrated enhancing the spatial resolution of
XRF microscopy using machine learning techniques, specifically
addressing the limitations imposed by the x-ray probe size. This
approach is particularly relevant to our work, as it demonstrates
the feasibility of machine learning models in overcoming physical
constraints in imaging methods, and successfully decoupled the
impact of the x-ray probe from the XRF signal using an RDB-
based network. Inspired by the prior work, here we introduce
a dual-branch model that combines both the residual channel
attention network (RCAN) [18] and the multi-scale residual net-
work (MSRN) [19]. The channel attention mechanism used in
RCAN adaptively rescales channel-wise features by considering
interdependencies among channels, thereby enhancing the rep-
resentational ability of convolutional neural networks. This leads
to improved accuracy and visual enhancements in image super-
resolution tasks, outperforming the state-of-the-art methods. The
multi-scale residual blocks (MSRB) used in MSRN utilize convo-
lution kernels of varying sizes to adaptively detect image features
at different scales, allowing these features to interact and extract
the most effective image information. In the work demonstrated
by Wu et al. [17], the fly-scan on natural images was incorporated
into the training and successfully enhanced spatial resolution
in experimental data. However, in deep learning, the domain
gap between XRF data and natural images is a persistent issue,
particularly due to the distinct noise characteristics and inherent
complexities of XRF datasets. These XRF datasets often exhibit
unique noise patterns, such as photon-counting noise or back-
ground fluorescence, which are markedly different from the types
of noise encountered in natural images. This domain gap requires
specialized adaptation strategies for models initially trained on
the natural image datasets, where noise typically manifests as pix-
ilation, compression artifacts, or variations in lighting and color.
Thus, we employ a two-stage training strategy: the network was
trained using natural image datasets from the DIV2K dataset [20],
followed by fine-tuning with experimental data from the HXN
beamline of NSLS-II. This strategy addresses the limited availabil-
ity of experimental data and the domain gap between experimental
data and natural images. Each projection was enhanced individu-
ally, and tomographic reconstruction was performed to visualize
the 3D structure of a charged Zn/MnO2 battery cathode in an
aqueous electrolyte for potential grid-scale energy storage appli-
cations [15]. Experimentally, the data acquisition in a fly-scan

mode can effectively enhance the scanning rate by continuously
moving the scanning stages, minimizing overhead. However, the
resulting images are a moving average of the convolution between
the beam profile and the sample. Here we incorporated the fly-scan
process in the training of the neutral network model. Our method
successfully mitigated the blurring effect caused by the scanning
process and restored the fine structure of cracks and pores present
in the sample. This method provides a reliable means of obtaining
high-resolution elemental distribution and enables more accurate
morphological analysis, particularly for nanoscale structures.

In summary, the novelty of the work is as follows. We intro-
duced a novel dual-branch network architecture that combines
residual channel attention blocks (RCAB) and multi-scale residual
blocks (MSRB). The network focuses on extracting features across
various spatial scales and uniquely prioritizes high-frequency
feature channels, enabling XRF super resolution. We adopted
a two-stage training process, initially training the network on
simulated natural image pairs blurred in fly-scan mode, followed
by refinement with experimental data to suppress noise. This
method, coupled with enhancements in both angular and lateral
dimensions, achieved a fourfold improvement in resolution. The
effectiveness of our fine-tuned network was further validated by
its capacity to produce high-quality image reconstructions from
limited projection data, achieving image quality comparable to
that from full projections.

2. METHODS

A. Simulation of X-Ray Fluorescence Microscopy
in Fly-Scan Mode

In the fly-scan mode, the convolution between sample and beam
profile can be described as [17]

Y j (Z, r)= σ(Z, λ)
∫ t0+1t

to

∫
+∞

−∞

P (r − vt)N(Z, r + r j )dr dt,

(1)
where r represents two-dimensional coordinates in real space, v

is the scan speed, Z is the atomic number, and λ is the wavelength
of incident x-ray. Y j (Z, r) is the measured XRF and σ(Z, λ) is
XRF cross section [21]. P (r) is the beam profile, and N(Z, r) is
the elemental distribution of the measures sample. It is evident that
the observed elemental distribution is affected by spatial blur due
to the moving beam profile and temporal blur from the scanning
duration. Given that the probe profile can be derived from pty-
chographic reconstruction, it is feasible to differentiate the double
integration and estimate the actual measured sample accurately.
This enhancement improves the resolution of XRF, providing a
more precise elemental distribution for quantitative data analysis.

To simulate the fly-scan [5] process, a discrete version of Eq. (1)
was utilized on natural images from the DIV2K dataset [20]
to establish training pairs. As depicted in Fig. 1(a), the probe
advanced in the scanning direction. At each scanning spot, the
sum of the element-wise product between the probe profile and
the scanning region in the high-resolution image was computed.
The summation across all scanning spots was then averaged to
determine the intensity of the corresponding pixel in the low-
resolution images. In the simulation, the pixel size of the probe
is 7.5 nm, and the scanning step size is every 4 pixels, which is
determined by the ratio of the raw XRF pixel size (30 nm) to the
pixel size of the phase-contrast image from ptychography recon-
struction (7.5 nm). In Fig. 1(b), the ground truth image represents
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Fig. 1. Schematic of the fly-scan simulation and the enhancement results (prediction) on natural images by the proposed network. (a) demonstrates the
simulated fly-scan process. In this simulation, the probe profile, obtained from ptychography reconstruction, scans a high-resolution image using a specific
step size. At every step of the scanning process, the element-wise product of the probe profile and the scanned area is calculated and then averaged on the
training dataset to form image pairs. These pairs help the model learn and reduce the blurring effects caused by the probe profile. The scale bar is 50 nm,
and the pixel size of the probe is 7.5 nm. (b) shows an enlarged view of both the ground truth and the low-resolution image from the validation dataset. The
low-resolution image is enhanced by a factor of four, resulting in a prediction that aligns with the size of the ground truth image. It can be observed that the
model successfully recaptures detailed features in the image.

the measured sample, while the low-resolution image from the
fly-scan corresponds to the elemental distribution. Notably, the
feature boundaries in the low-resolution image appear consider-
ably blurred due to scanning with the probe profile. Additionally,
the high-resolution image was down-sampled by the scanning step
size, resulting in pixel-like features.

B. Machine Learning Model for Super Resolution

Figure 2 shows the structure of the proposed model inspired from
RCAB [18] and MSRB [19]. Super resolution of 4 times is consid-
ered in this case, i.e., the width and height of the high-resolution
output image is 4 times larger than the low-resolution input image.
The proposed model has a dual-branch architecture to extract
features at different space scale and frequency scale. Four funda-
mental modules are here to form the complete proposed model
for XRF image super resolution: (i) a shallow feature extraction
module to extract low level features from the input, (ii) a spatial
extraction module to extract features at different scale (see Fig. S1
in Supplement 1), (iii) a frequency filter module to bypass the
abundant low frequency information and focus on the high fre-
quency information representing detailed structure (see Fig. S2 in
Supplement 1), and (iv) an up-sampling module to for upscaling
the final high-resolution output from low resolution feature maps.

The spatial feature extraction module consists of several multi
scale residual blocks (MSRB). In each MSRB, there is a two-bypass
structure where each bypass utilizes a unique kernel size. The
feature maps extracted from each bypass are then concatenated to
share the information from different spatial scales. A local residual
learning is also employed to enhance the learning efficiency. In the
frequency filter module consisting of residual channel attention

blocks (RCAB), a combination of the short and long skip connec-
tion is used to filter the low frequency information representing
the texture and the background. Low-frequency information
and high-frequency information are of different importance in
recovering high-resolution images. Treating them equally across
channels limits the representational ability of convolutional neural
networks (CNNs). To overcome this issue, a channel attention
mechanism [22,23] is used in RCAB to adaptively rescale channel-
wise features by considering interdependencies among channels.
By leveraging channel interdependencies, the mechanism refines
feature maps, ensuring that more relevant channels are amplified
while less pertinent ones are suppressed, thereby optimizing feature
representation for improved super-resolution performance. A
residual in residual (RIR) structure, composed of residual groups
(RG), is introduced, forming a very deep network composed of
several residual groups with long skip connections. Each of these
RG contains residual blocks with short skip connections. This
channel attention mechanism, combined with the RIR structure,
allows the network to bypass the low-frequency information and
restore the high-resolution image more accurately. Contrary to
traditional methods that upscale the low-resolution (LR) input
image to high-resolution (HR) before reconstruction [24,25],
adding computational complexity, the used up-sampling layer
extracts feature maps in the LR space. The sub-pixel convolution
layer [26] then upscales these final LR feature maps directly to the
HR output. This method replaces the conventional bicubic filter
with upscaling filters specifically trained for each feature map,
offering enhanced performance and swifter processing compared
to prior CNN-based techniques.

https://doi.org/10.6084/m9.figshare.24926454
https://doi.org/10.6084/m9.figshare.24926454
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Fig. 2. (a) Architecture of the proposed dual-branch model. Multi-scale residual block (MSRB) and residual channel attention blocks (RCAB) serve as
the foundational modules, each tailored to extract features from distinct domains: the former focuses on the spatial domain while the latter targets the fre-
quency domain. Subsequent to their individual operations, the feature channels from both branches are added element-wise. This combined channel is then
fed into a pixel shuffle layer, which up-samples the image to the desired resolution. The scale factor employed in this architecture is 4. (b) presents the archi-
tecture of the MSRB, which consists of convolutional kernels of two different sizes. (c) displays the residual group (RG) composed of RCABs. In RCAB, the
channel attention mechanism is employed to selectively bypass the channels with low-frequency features.
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Fig. 3. Schematic illustration of the experimental setup at the Hard X-ray Nanoprobe (HXN) beamline of NSLS-II [3]. The incoming x-ray nanobeam
is focused by a Fresnel zone plate (FZP). An order-sorting-aperture (OSA) following the FZP removes unwanted background to ensure a clear focus. The
sample is rotated and scanned in fly-scan mode at various angles. A fluorescence detector captures signals for elemental mapping, while a transmission detec-
tor is used for phase-contrast imaging. The XRF mapping is fitted with the Mn and Zn emission lines. The scale bar is 2µm.

3. EXPERIMENTS

A. Experimental Setup

A charged zinc/manganese oxide (Zn/MnO2) battery cathode in
a mild aqueous electrolyte was studied after 32 cycles (450 h) at a
C-rate of 0.1C. The sample was prepared following the same pro-
cedure as described in our previous work [27]. The cycled cathode

was extracted in its charge state followed by immediate washing
in HPLC grade water and then was dried under vacuum for 12 h.
The electrode was then scrapped from the current collector directly
onto a sample mounting diving board. The experimental setup
is shown in Fig. 3. During data acquisition at the Hard X-ray
Nanoprobe (HXN) beamline, the x-ray nanobeam was focused
by a Fresnel zone plate (FZP), and the sample was measured in
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fly-scan mode at 10 keV. The zone plate used in this measurement
has 30 nm outermost zone width and 250 µm diameter. The
focus size is 40 nm. The dwell time per scan point was 0.03 s. Two
locations of the same sample were measured. One was measured
at 30 nm and 120 nm scanning step size, with the projections col-
lected every 2◦ from 90◦ to−90◦ and was used to demonstrate the
super-resolution imaging enhancement. The other was utilized as
the fine-tuning data and measured at 50 nm and 200 nm scanning
step size, with the projections collected every 3◦ from 90◦ to−18◦.
The fluorescence signal was collected by an energy-dispersive
detector, and the diffraction pattern was collected by a pixel-array
detector. The probe profile used for simulation was obtained by
ptychography reconstruction from the 90◦ projection at 30 nm.
The goal is to identify the irreversible Zn Mn complex [28], along
with the morphological changes.

B. Implementation Details and Training

In the proposed spatial extraction module of the network, which
utilizes a two-bypass structure, filters of sizes 3× 3 and 5× 5 are
employed to detect features across different scales. These filters
are followed by a 1× 1 convolutional layer, specifically designed
to amalgamate the local features. In the frequency filter module,
which comprises RCABs, all convolutional layers predominantly
use a 3× 3 filter size. However, the channel attention employs a
kernel size of 1× 1. The network first compresses the number of
feature layers to one-sixteenth of its original size, then expands it by
a factor of 16. The top branch integrates five MSRBs. The bottom
branch includes 10 RGs, with each RG containing 10 RCABs.
The network achieves an overall up-sampling factor of 4 through
two pixel-shuffle layers, each capable of up-sampling by a factor
of 2. The activation function employed is the rectified linear unit
(ReLU) [29]. For backpropagation, the ADAM [30] optimizer is
chosen with parameters β1 = 0.9 and β2 = 0.999. The training
process optimizes the L1 loss function [31]. The learning rate
starts at 10−4 and is decreased to one half after the first 100 epochs.
Subsequently, it decays by half every 50 epochs, with the model
being trained for a total of 250 epochs. The implementation of
the model was executed in Python using PyTorch [32], and the
training was conducted on an NVIDIA 3090Ti GPU. It took
19 h to train the simulated natural images and 4 h to fine-tune the
network by experimental data. In our experiment, obtaining 91
projections with a pixel size of 30 nm took 16 h. In contrast, acquir-
ing the low-resolution data (a coarser scanning step size), with a
pixel size of 120 nm, only required approximately 1 h. Without
sacrificing achievable resolution, this enhancement in data acqui-
sition throughput and dose efficiency would make a huge impact
on scientific applications, especially for radiation-sensitive sample
systems.

The model was trained using natural images from the DIV2K
dataset [20]. To generate the low-resolution image, the high-
resolution image underwent a fly-scan using the probe profile
derived from ptychography reconstruction, with a step size of
every 4 pixels, which is determined by the ratio of pixel size of
the XRF data (30.0 nm) and probe (7.5 nm). Thus, the pixel size
of enhanced XRF data matches the pixel size of reconstructed
probe. Image patches of size 64× 64 were randomly cropped from
the low-resolution images, and their corresponding 256× 256
patches were extracted from the high-resolution images. In total,
6280 patches were utilized for training. Data augmentation
techniques were applied to these training images. They were

normalized between 0 and 1, subjected to random rotations of
90◦, 180◦, and 270◦, and could be flipped both horizontally and
vertically. A total of 100 natural images from the DIV validation
dataset were used for validation, all of which were normalized
between 0 and 1. The prediction results can be seen in Fig. 1(b).
We also demonstrate the improved importance of the dual-branch
structure for feature extraction by conducting an ablation study
(see Table S1 in Supplement 1).

C. Fine-Tuning the Machine-Learning Model with
Experimental Data from Synchrotron X-Ray Microscopy

In the realm of image enhancement, models trained exclusively
on natural images often encounter challenges when applied to real
experimental data, especially with noise. Such models, when used
to enhance these noisy experimental images, tend to introduce
streak-like or periodic pattern artifacts such as the ones indicated
by dashed lines shown in Fig. 4. This phenomenon can be attrib-
uted to the fact that natural images typically lack the specific types
of noise present in experimental data [33]. The artifacts may
come from different sources: (1) The noise condition we added in
the simulation process could be different from the experimental
condition. (2) The artifacts in the marked region in Fig. 4 show
periodic line and dot structures, which share certain similarities
with the ptychography reconstruction artifacts with periodic scan
patterns. The intrinsic connection relies on periodic grids that
were used to simulate the low-resolution images in the training
process. (3) Overfitting in the de-convolution process may also
introduce such artifacts. In this work, we show that fine-tuning
the network with a small amount of experimental datasets can
effectively mitigate those defects. Experimental data encompassed
all kinds of noise and can enable the network to concurrently
suppress all types of noise during the enhancement process, ensur-
ing a comprehensive and optimized noise reduction strategy. As
mentioned in experimental setup, two sets of datasets were mea-
sured, one with low resolution at 120 nm and high resolution
at 30 nm, the other at 200 nm and 50 nm. Both have the same
scale factor of four. The primary objective was to enhance the
data at 30 nm resolution further by 4 times to match the quality
of the ptychography reconstruction. Thus the dataset measured
at 200 nm and 50 nm can be served to fine-tune the network.
However, the features in the 50 nm XRF images, though we labeled
them as “high-resolution,” still seem to be blurry compared with
the high-resolution natural images. As a result, it is inevitable to
introduce a slightly blurry effect during the fine-tuning stage. It is
important to strike a balance between the training from simulated
natural images and fine-tuning so that the model can retain the
excellent feature extraction and deblurring capabilities it acquired
from training on natural images and suppress the noise. To achieve
that goal, strategic adjustments were made during the fine-tuning
stage: the learning rate was set at a tenth of that used for the natural
image training, and the epoch count was limited to 50, a signifi-
cant reduction from the 250 epochs designated for natural image
training. Notably, the number of image patches employed for this
fine-tuning process was 1024, deducted from 37 XRF images,
which is considerably fewer than those used in the natural image
training phase.

The network is designed to enhance its feature extraction capa-
bilities, enabling it to effectively recover the fine features blurred in
the scanning process. Furthermore, the fine-tuning stage, which

https://doi.org/10.6084/m9.figshare.24926454
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Fig. 4. Zn and Mn mapping at resolutions of 50 nm and 200 nm is used to fine-tune the network with a reduced learning rate, and fewer epochs,
enabling the network to enhance the XRF projections with noise, effectively eliminating streak-like artifacts. Some of such artifacts are indicated by the
arrows as examples. Zn XRF maps are shown as examples. All the scale bars are 1µm.

helps to suppress the noise, bridges the domain gap between simu-
lated data and experimental data, ensuring that the model performs
robustly on specified experimental datasets.

4. RESULTS AND DISCUSSION

A. Enhancement on Lateral and Angular Sampling
of XRF Data

Rechargeable aqueous batteries, especially Zn/MnO2 batteries,
have gained significant attention for large-scale energy storage
due to their cost-effectiveness and inherent safety. Historically,
Zn/MnO2 batteries dominated the primary battery market,
underscoring their affordability and safety [27]. In mild aqueous
electrolytes, these batteries demonstrate promising results to be
used as rechargeable batteries [28,34–36]. To mitigate these chal-
lenges and enhance cycling stability, understanding the nano-scale
morphological and structural changes within the electrodes dur-
ing the dissolution–deposition processes is essential. Assessing
the impact of these changes on battery performance is vital for
developing strategies to optimize battery longevity and efficiency.

For our study, a charged Zn/MnO2 battery cathode in a mild
aqueous electrolyte, after 450 h of cycling at a C-rate of 0.1C,
was measured at the HXN beamline. Both XRF signals and
far-field diffraction patterns were collected. The probe profile,
reconstructed from ptychography phase retrieval, informed the
network’s learning to separate the blurring effect. Each XRF 2D
image at 30 nm was enhanced. The raw XRF images had a pixel
size of 30 nm and size 91× 140× 140, with 91 representing the
number of evenly distributed projections from 90◦ to −90◦, and
140× 140 indicating the projection’s width and height. Based
on the Crowther criterion, an increase in resolution necessitates
a corresponding increase in the number of projections for valid
tomographic reconstruction. Consequently, tomographic recon-
structions from the 30 nm XRF projections were reprojected to
270 projections, evenly distributed from 90◦ to −90◦. These
reprojected projections, with a pixel size of 30 nm, were then
enhanced by the proposed model with a scale factor of 4, resulting
in enhanced XRF data with a pixel size of 7.5 nm, which matched
the pixel size of the probe, and dimensions of 270× 560× 560.

The tomographic reconstructions for both the raw and enhanced
XRF were executed using the ordered-subset penalized maximum
likelihood algorithm [37]. Figure 5 displays the comparison before
and after enhancement for both 3D visualization and 2D central
slices. Enhanced XRF reveals clearer particle borders, and even
nano-scale cracks and pores are discernible. However, these minute
features tend to blur during fly-scan. Fly-scan essentially averages
the surrounding voxels, blurring boundaries. Trained on high-
and low-resolution image pairs from natural image datasets and
fine-tuned for experimental noise, the model effectively separates
the blurring effect from each fly-scan spot. Using the Fourier shell
analysis [38], the resolution of both raw and enhanced XRFs was
determined. The intersection of the FSC with the one-bit thresh-
old, as depicted in Figs. 5(d) and 5(e), provides the quantified
resolution. The resolution of the raw XRF improved from 60.8 nm
to 14.8 nm upon enhancement. In Fig. S3 in Supplement 1, we
showed the relationship between number of reprojections and
the calculated resolution by FSC. By re-projection and super
resolution, 14.6 nm was the limit of this method to enhance the
tomography reconstruction, and 270 projections met the mini-
mum requirement to achieve that resolution. Such enhancement
could enable quantitative analysis on finer structures, like cracks
and pores, and offer insights into the formation of irreversible
Zn/Mn complex side products during cycling. This understanding
propels the Zn/MnO2 system closer to practical application,
highlighting its potential as a reversible, stable, and safe battery
chemistry.

In Fig. 6, a comparison between the raw XRF, enhanced XRF,
and phase-contrast image from ptychography reconstruction is
shown to better validate the method. The enhanced XRF tomog-
raphy reconstruction shows a more detailed structure, compared
to the raw projections, which only offer pixelated features. This
new, detailed structure in the enhanced projection correlates
with the structure observed in the phase-contrast image obtained
from ptychography reconstruction. A closer look reveals a porous
structure within the sample, as indicated by the red box in Fig. 6,
which remains unseen in the raw XRF due to blurry from fly-scan.
However, this porous structure becomes visible in the enhanced
XRF after decoupling the blurry effect from the scanning probe

https://doi.org/10.6084/m9.figshare.24926454
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Fig. 5. Comparison of tomography reconstructions from raw (91 projections) and enhanced XRF images (270 projections). This includes central cross-
sections in three directions and the application of the Fourier shell correlation (FSC) for resolution quantification. (a) and (b) display 3D visualizations of
the raw and enhanced tomography reconstructions, respectively. (c) illustrates the cross-sections derived from both raw and enhanced XRF, highlighting the
mitigation of blurring effects due to sample movement and the dynamic source, resulting in clearer representation of cracks and pores. (d) and (e) show the
FSC analysis, with resolutions determined at 60.9 nm for raw and 14.8 nm for enhanced XRF.
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Fig. 6. Comparison between the enhanced XRF data and the phase-contrast image from ptychography reconstruction. (a) to (c) show the projections
of raw XRF (fitted at Zn emission line), enhanced XRF (scale factor of 4), and phase-contrast image from ptychography reconstruction The zoom-in views
of the labeled red box are at the bottom right corner of each image. (d) to (f ) are one of the slices from tomography reconstruction with raw XRF data,
enhanced XRF data, and ptychography data. The pixel size of those images is 30 nm (left column), 7.5 nm (middle column), and 7.5 nm (right column).
The scale bar is 1µm.

and is consistent with the ptychography reconstruction, while
comparing the XRF fitted at Zn with the phase-image from
ptychography reconstruction might not be entirely fair, as pty-
chography can reveal more morphological information beyond
the distribution of Zn. Here, the ptychography serves as a vali-
dation method for the pore structure within the marked region,
observable in the enhanced XRF but absent in the raw XRF data.
It is anticipated that the phase-contrast ptychography and the
enhanced XRF can be similar, though they may not be identical.
However, the compound in our sample is ZnMn2O4 [27], thus Mn
and Zn are co-localized within the sample. Therefore, the distribu-
tion of any given element, such as Zn, could indicate the primary
structural information in comparison to the phase-contrast image.

B. Enhancement on Tomography Reconstructions
with Limited Projections

Data acquisition at the HXN beamline, especially with a fine step
size, is notably time-consuming. For instance, obtaining 91 pro-
jections at a 140× 140 pixel size field of view at 30 nm step size
requires around 16 h. This slow rate of data acquisition makes it
impractical to conduct a tomography measurement with sufficient
projections determined by the Crowther criterion. Considering
the inherent dependency of projections at adjacent angles and
the well-trained super resolution model, it is feasible to obtain a
valid high-resolution tomography reconstruction with a reduced
number of projections. To mimic a real-world situation where
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Fig. 7. Results of limited angle tomography reconstruction.
(a) Illustrates the reprojection process for enhancement in the angu-
lar dimension. Half of the low-resolution Zn XRF projections (45 in
total) are used for tomography reconstruction. This reconstructed vol-
ume is subsequently reprojected across 91 angles, uniformly spanning
from −90◦ to 90◦ to obtain projections at the same angle as the experi-
ment. These reprojected Zn XRFs are enhanced by the model to achieve
high-resolution Zn XRFs, which were then used for tomography recon-
struction for the 3D Zn distribution. (b) and (d) show a central slice
from the raw and enhanced tomography reconstructions in the YZ plane,
respectively. (c) and (e) present the FSC analysis, quantifying the resolu-
tion of the raw and enhanced tomography reconstructions. Resolutions
are 60.8 nm for the raw and 20.8 nm for the enhanced tomography
reconstruction. For comparison, (f ) and (g) show the central slice from
the tomography reconstruction with the original 91 projections and the
FSC analysis, which indicates a resolution of 14.8 nm. All the scale bars
are 1µm.

limited projections were available, only half of the projections
evenly distributed from 90◦ to−90◦ acquired at 30 nm were used
for tomography reconstruction. Following this, the tomographic
reconstruction was reprojected into 91 projections to have a fair
comparison of the real experimental XRF data with the same
number of projections. The schematic of the reprojection proc-
ess is shown in Fig. 7(a). The proposed trained model was then
employed to enhance these projections, after which tomography
reconstruction was performed using the enhanced 91 projections.
The cross sections in Figs. 7(b) and 7(d) indicate that this method
can still yield a valid reconstruction of the sample, thereby acceler-
ating the experiment. The resolution for raw and enhanced XRF
using half of the projections is 60.8 nm and 20.8 nm by applying
the enhancement on the 91 measured projections. It is noteworthy
that the resolution of 20.8 nm represents a nearly 3-fold improve-
ment over the 60.8 nm obtained from the raw XRF data. This
underscores the validity of the assumption regarding the similarity
between adjacent projections and attests to the model’s capability

to enhance the resolution of low-quality XRF data. Moreover, the
20.8 nm resolution closely approximates the 14.8 nm achieved
by inserting more projections for tomographic reconstruction.
Yet, this enhanced resolution can be achieved in half the experi-
mental duration. This also suggests that incorporating additional
projections could further refine the resolution according to the
Crowther criterion. Additionally, this refined resolution effectively
unveils nuanced nano-scale structures, such as cracks and pores,
facilitating a more precise morphological and chemical analysis
pertinent to the study of reaction mechanisms in energy storage
research.

5. CONCLUSION

In this research, a dual-branch network enabling feature extraction
at both space and frequency domains was employed to enhance
the resolution of XRF images. This network was trained using fly-
scan simulations on natural images to decouple the blurring from
fly-scan during data acquisition. It was subsequently fine-tuned
with a reduced learning rate and limited epochs using real exper-
imental data to suppress noise. The enhancement was done both
on lateral sampling in each projection by the proposed model and
on angular sampling by inserting new projections. The resolution
of the enhanced XRF tomography reconstruction is enhanced
by 4 times as indicated by FSC, compared to the raw XRF data.
More distinct and fine features like cracks and pores are visible
in the enhanced XRF data, which helps to elucidate the under-
lying reaction mechanisms inherent to energy storage materials.
Furthermore, by fully capitalizing on the inherent relationship
between adjacent projections and the well-trained model, valid
enhanced XRF tomography reconstructions could be obtained
with only half of the low-resolution XRF projections. Overall,
the proposed dual-network super-resolution imaging method
based on deep-learning can enable high-resolution tomography
reconstruction by enhancement in the lateral sampling of each
2D images and also in the angular sampling by inserting new 2D
images. Such an approach not only conserves experimental time
but also minimizes potential beam damage to the sample.
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