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Abstract
We present a novel approach to predicting
source-and-target factuality by transforming
it into a linearized tree generation task. Un-
like previous work, our model and representa-
tion format fully account for the factuality tree
structure, generating the full chain of nested
sources instead of the last source only. Further-
more, our linearized tree representation signifi-
cantly compresses the amount of tokens needed
compared to other representations, allowing for
fully end-to-end systems. We achieve state-of-
the-art results on FactBank and the Modal De-
pendency Corpus, which are both corpora an-
notating source-and-target event factuality. Our
results on fine-tuning validate the strong gener-
ality of the proposed linearized tree generation
task, which can be easily adapted to other cor-
pora with a similar structure. We then present
BeLeaf, a system which directly leverages the
linearized tree representation to create both sen-
tence level and document level visualizations.
Our system adds several missing pieces to the
source-and-target factuality task such as coref-
erence resolution and event head word to syn-
tactic span conversion. Our demo code is avail-
able on https://github.com/yurpl/
beleaf and our video is available on https:
//youtu.be/SpbMNnin-Po.

1 Introduction

The term “factuality" (or belief1) refers to what
extent an event mentioned by the author or by
sources in a text is presented as being factual. In
other words, the task aims to predict whether the
author or the mentioned sources in the text be-
lieves the event happened. The event factuality
prediction task (EFP) has received a lot of attention
over the past few years, but only in the perspective
of the author of the text, disregarding the factual-
ity of events according to all sources (Lee et al.,

1We use the terms interchangeably since our system is
called BeLeaf. Factuality is closely related to the notion of
“belief" as used in cognitive science and AI.

2015; Stanovsky et al., 2017; Rudinger et al., 2018;
Pouran Ben Veyseh et al., 2019; Jiang and de Marn-
effe, 2021).

Two notable exceptions are the FactBank corpus
(Saurí and Pustejovsky, 2009) and the Modal De-
pendency Parsing corpus (MDP) (Yao et al., 2021).
Both corpora annotate event factuality according
to the author of the text, and also according to the
sources mentioned in the text, with some slight
differences. FactBank represents factuality on the
sentence level, while the MDP corpus represents
factuality as a document-level modal dependency
structures (MDS) proposed by Vigus et al. (2019).
The MDP structure uses a tree representation where
the author of the text (AUTHOR) is the root, and
events and other sources are child nodes of the
author. The corpora also differ slightly on labels:
FactBank annotates the factuality of events (along-
side their polarities) as CT (certain), PR (probable),
PS (possible), UU (unknown), while the MDP cor-
pus annotates events as full positive (Pos), partial
positive (Prt), positive neutral (Neut), negative neu-
tral (Neutneg), partial negative (Prtneg) and full
negative (Neg).

AUTHOR

Meteorologists

Source

say

CT+

rains

UU

get

UU

CT+ CT+

Figure 1: Source-and-target factuality represented
as a modal dependency structure for the sentence
“Meteorologists say the weather will get worse because
there will be rains."

An NLP system’s ability to accurately attribute
events’ factuality according to all sources is vital
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for downstream tasks that are based on those events.
Consider the example sentence in Figure 1 where
we have three events: the say event, the rain event,
and the get event. We also have one source that the
author mentions, Meteorologists. The author is cer-
tain (CT+) that the say event happened . However,
the author does not tell us (UU) about their view
of the factuality of the rains event or the get event
because it is being presented by the source Meteo-
rologists. According to the source Meteorologists,
these events are factual (CT+). An information
extraction system should extract the specific fac-
tuality of these events depending on all sources
presenting the event, not only the author. Systems
and humans can then make a separate judgement
about the weather based on their sense of the trust-
worthiness of the author and of meteorologists.

In this paper, we present the source-and-target
event factuality prediction task as a linearized tree
generation task. We represent both FactBank and
the MDP corpus as linearized trees, achieving state-
of-the-art results for both corpora and beating both
our FactBank results (Murzaku et al., 2023) and
the MDP results from Yao et al. (2022). This repre-
sentation format not only performs better, but also
allows for a clear and interpretable visualization,
which we show in our BeLeaf system.

2 Related Work

Author-Only Factuality All previous ap-
proaches to the event factuality prediction task
were in the author-only setting, ignoring nested
sources. Early approaches used rule-based
systems and/or lexical and dependency tree
based features (Nairn et al., 2006; Lotan et al.,
2013). Early machine learning work used SVMs
alongside dependency tree and lexical based
features (Diab et al., 2009; Prabhakaran et al.,
2010; Lee et al., 2015; Stanovsky et al., 2017).
Neural work includes LSTMs with multi-task or
single-task approaches (Rudinger et al., 2018) or
using BERT representations alongside a graph
convolutional neural network (Pouran Ben Veyseh
et al., 2019). Jiang and de Marneffe (2021) expand
on previous work by using other event factuality
corpora in multiple training paradigms while
also introducing a simpler architecture. These
approaches evaluate on Pearson correlation and
mean absolute error (MAE), failing to capture
individual label performance and assuming events
are given. We (Murzaku et al., 2022) provided the

first end-to-end evaluation using F-measure and
improve on FactBank.

Source and Target Factuality One of the main
corpora experimented on in this paper, which anno-
tates all events introduced in a corpus of exclusively
newswire text is the FactBank corpus (Saurí and
Pustejovsky, 2009).The FactBank corpus not only
annotates the factuality presented by the author of
a text towards an event, but also the factuality of
events according to their presentation by sources
mentioned inside of the text. Saurí and Pustejovsky
(2012) were the first to investigate and perform ex-
periments on the source and target annotations in
FactBank. Their evaluation was not end-to-end and
was given manual annotations, so it is therefore
not comparable to our results on FactBank. We
(Murzaku et al., 2023) were the first to represent
the event factuality prediction task as a generation
task using Flan-T5 while also accounting for source
and target factuality. However, our previous model
did not account for the full nesting structure of
the source since our model only generated the last
nested source.

Our new system generates the full nesting struc-
ture, and is therefore not comparable to our pre-
vious FactBank results as that task was far easier
and incomplete. Yao et al. (2021) also propose a
source-and-target corpus (MDP corpus) and Yao
et al. (2022) improve on their previous results by
using a prompt-based approach where they treat
factuality prediction as a BIO tagging task, fine-
tuning on XLM-RoBERTa (Conneau et al., 2020).
Followinfg the modal dependency structure from
Vigus et al. (2019), their corpus annotates events,
sources, and credibility of sources throughout a
whole document. The top level source is always
the author of the text. While similar to FactBank in
some ways, there are some key differences (which
we describe in Section 3.1), making the corpora
incompatible for joint experiments with FactBank.

Document Level Factuality Qian et al. (2019)
are the first to present the document level factuality
task, but again in the author-only setting. Their
work is expanded by Cao et al. (2021), Qian et al.
(2022), and more recently Zhang et al. (2023). In
this task the input is a document and a factuality
target, and the output is the label representing the
factuality attributed by the author to the provided
target. Our task is different, which is to find all
sources and targets of factuality assessments.

Our work differs from the previous work on



event factuality prediction in two major ways:
(i) We are the first to provide a novel and state-
of-the-art machine learning representation for the
source-and-target event factuality prediction tasks
(both sentence level and document level).
(ii) To our knowledge, we are the first provide a
unified toolkit and intuitive front-end interface for
the event factuality prediction task. Our toolkit
improves on several shortcomings of previous cor-
pora and approaches to this task and our interface
leverages the new tree representation for a clear
and interpretable visualization.

3 Approach

3.1 Data Representation

FactBank The FactBank corpus annotates event
factuality according to the author and sources at-
tributied by the author. When a source is not
present or explicitly mentioned in text, FactBank
uses the GEN label. For example, in the sentence
The transaction is expected to close, there is no
explicit mention of a source attributing the events,
therefore being labeled GEN. When a sentence con-
tains a fragment of a quotation, FactBank uses the
DUMMY label. We represent all sources including
GEN and DUMMY.

MDP corpus The MDP corpus also annotates
factuality of events according to the author and
nested sources. Additionally, the MDP corpus an-
notates the factuality between the author and em-
bedded sources (or further embedded sources) to
account for overall credibility of sources by attribut-
ing the author’s certainty towards them. For exam-
ple, in Figure 1, the MDP corpus would annotate
the edge between AUTHOR and Meteorologists as
Pos, or full positive, meaning the author is certain
the Meteorologists are presenting an event. In our
linearized tree representation, we include these fac-
tuality labels when beginning a new nest to also
capture credibility. Finally, like GEN in FactBank,
the MDP corpus uses NULL to capture sources that
are not present or explicitly mentioned in text.

Labels In Section 1, we present the corpus-
specific labels. For our linearized tree genera-
tions, we convert each label to distinct words. For
FactBank, we follow our previous FactBank work
(Murzaku et al., 2022) and collapse the PR+/PS+
and PR-/PS- labels. Similarly, for the MDP cor-
pus we follow Yao et al. (2022) and collapse the
Prt/Neut and Prt-neg/Neutneg labels. Table 1 and

Pos Prtpos Prtneg Neg
true ptrue pfalse false

Table 1: Factuality values for the MDP corpus

CT+ PR+ UU PR- CT-
true ptrue unknown pfalse false

Table 2: Factuality values for the FactBank corpus

Table 2 show our mapped values for the MDP and
FactBank corpora respectively.

Tree Generation We approach the source-and-
target event factuality prediction task as a linearized
tree generation task. Consider the example sen-
tence from Figure 1 in a FactBank format. We
reformat the FactBank data as the following in-
put/output pair for machine learning:
Input: Meteorologists say the weather will get
worse because more rains are on the way.
Output Tree: (AUTHOR (rains unknown) (get un-
known) (say true) (Meteorologists nest (rains true)
(get true)))

We add the special nest token to denote the be-
ginning of a nested source and their respective pre-
sentation of events.

3.2 Model

We use the encoder-decoder pre-trained Flan-T5
model (Chung et al., 2022) and the decoder only
GPT-3 model (Brown et al., 2020). The Flan-T5
model is an instruction fine-tuned model with sig-
nificant performance improvements compared to
T5 (Raffel et al., 2020) and better adaptability to
unseen tasks as a result of instruction tuning. Fur-
thermore, the larger parameter variants of Flan-T5
have comparable or better performance on some
tasks to GPT-3. By formulating the linearized tree
construction as a generation task, our models are
end-to-end and do not need gold event words as
input.

4 Experiments: Fine-tuning

4.1 Corpora

We use our split of FactBank (Murzaku et al., 2022)
for all examples including author and non-author
sources. We also use the MDP corpus split from
Yao et al. (2021). Like Yao et al. (2021) and Yao
et al. (2022), we only consider examples with two
levels of sources. For FactBank, we consider all



MiF1 AMiF1 AMF1 CT+ PR+ UU PR- CT-
Murzaku et al. (2022) - - 0.680 0.767 0.714 0.735 0.667 0.519
Murzaku et al. (2023)* 0.645 0.740 0.616 0.815 0.456 0.717 0.444 0.646
Flan-T5-Tree (Ours) 0.695 0.766 0.708 0.805 0.587 0.752 0.667 0.733
GPT-3-Tree (Ours) 0.658 0.760 0.678 0.778 0.455 0.747 0.667 0.723

Table 3: Results on the FactBank corpus for our Flan-T5 and GPT-3 systems evaluating on micro-f1 (MiF1), author
micro-f1 (AMiF1), author macro-f1 (AMF1), and author per-label f1. We show baseline results from Murzaku et al.
(2022) and redo Murzaku et al. (2023) for direct comparison (signaled by *). A shaded cell indicates state-of-the-art
and statistically significant (p < 0.05)

dev test
Yao et al. (2021) P 0.697 0.675
Yao et al. (2021) J 0.703 0.690
Yao et al. (2022) 0.727 0.719
Flan-T5-Tree (Ours) 0.762 0.749
GPT-3-Tree (Ours) 0.764 0.741

Table 4: Results on the MDP corpus evaluated on micro-
f1 compared to previous state-of-the-art results from
Yao et al. (2022)

levels of sources, but the majority have between
one and three levels, with only four examples hav-
ing three levels of sources.

4.2 Experiment Details

We use a standard fine-tuning approach on Flan-
T5 and GPT-3. We fine-tune our Flan-T5 models
for at most 20 epochs with a learning rate of 3e-
4, with early stopping being used if the validation
micro-F1 did not increase. We use task-specific pre-
fixes and note that using instructions did not boost
performance. Our Flan-T5 experiments are aver-
aged over three runs using fixed seeds. We perform
significance testing to previous baselines using a
paired t-test. Due to costs, our GPT-3 experiments
are performed once. We leave more experimental
details to Appendix B.

4.3 Evaluation

We evaluate on micro-f1 (MiF), author-only micro-
f1 (AMiF1), and author-only macro-f1 (AMF1) for
FactBank. All of these metrics help us quantify
to what extent we capture the full author and non-
author sources in our generations: MiF1 shows
how well we can generate full tree structures in-
cluding their nesting, AMiF1 shows how well our
model characterizes events only from the perspec-
tive of the author (which is a majority of events),
and AMF1 shows how well we predict all factu-

ality labels regardless of frequency, according to
the author. For the modal dependency corpus, we
follow Yao et al. (2022) evaluating on micro-f1.

4.4 Results: Fine-tuning

FactBank Table 3 shows results for our lin-
earized tree generation model on the FactBank
corpus. We compare our results to our baselines
from Murzaku et al. (2022) and Murzaku et al.
(2023). Murzaku et al. (2023) do not generate
nested sources. We modify our baseline to gener-
ate all sources by adding the full nestings to their
source-and-target triplet generation task. For ex-
ample, a doubly nested triplet (Mary, said, true)
becomes (AUTHOR_John_Mary, said, true). Our
Flan-T5 system outperforms the previous state-of-
the-art results and GPT-3 on all micro-f1, author-
only micro-f1, author macro-f1. Furthermore, on
the per-label f-measures, we see the largest boost
and new SOTA in the CT- label ( 9% absolute in-
crease), and slight but statistically significant in-
crease in the UU label.

MDP Corpus Table 4 shows results for our lin-
earized tree generation models on the MDP corpus.
We beat the previous state of the art from Yao et al.
(2022) on dev by 3.7% and on test by 3%. We
observe that on test, fine-tuning Flan-T5 outper-
forms fine-tuning GPT-3, which can be explained
by Flan-T5’s generalizability to unseen tasks from
instruction tuning.

5 BeLeaf: System Description

In this section, we present our BeLeaf system
which leverages our generated tree structure. Our
system is split into three parts: a generalized
API for querying our Flan-T5 model with either
sentences or documents, a preprocessing pipeline
where we improve on the document level event
factuality/belief task from Yao et al. (2021) by



Figure 2: The BeLeaf system with a textbox for sentence or document inputs, the leaf button to begin inference, and
our output tree with corresponding belief values as edge colors and labels.

accounting for coreference, and a postprocessing
pipeline accounting for syntactic spans with a tree
visualization tool. Our system is shown in Figure 2.

5.1 API

We build a REST API using Flask (Grinberg, 2018),
adding a single inference endpoint for all inference.
Our API then queries our top-performing Flan-T5
model fine-tuned on FactBank. Before beginning
inference, we perform a preprocessing pipeline.

5.2 Preprocessing

To account for both sentence and document level
belief, we use spaCy (Honnibal and Montani, 2017)
for splitting our model into sentences, and then pass
this into our sentence-level FactBank model. This
allows us to maximize our systems speed but we
still need to account for beliefs across sentences.
Therefore, to create a true document level belief
system, we add a coreference resolver in our sys-
tem. The MDP Corpus (Yao et al., 2021) is not a
true document level representation of belief since
they do not account for coreference resolution, and
therefore a source can be repeated. We use the
fastcoref library (Otmazgin et al., 2022) to perform
coreference which was found to maximize speed
with a minimal drop in accuracy for the coreference
resolution task.

5.3 Postprocessing and Tree Visualization

Postprocessing After we get an output from our
model, we perform a postprocessing pipeline to get

syntactic spans. Since both FactBank and the MDP
corpora annotate only syntactic head words or noun
events, we oftentimes miss the full syntactic span
and context of the event in question. To address
this, we create a head-to-span module that uses
spaCy (Honnibal and Montani, 2017) to return the
full syntactic span. We include this representation
as a hover-over in the tree visualization and also
include it as a data download option.

Tree Visualization The final piece of our system
is our tree visualization module. A sample output
of our tree output is shown in the right hand side
of Figure 2. To clearly distinguish between nested
sources and their child events, we do not visual-
ize with a DAG structure like the representation
in Figure 1 where edges connect to nodes from
both the author and the nested source, but rather a
distinguished-source tree structure. All visualiza-
tions are made in JavaScript using the d3 library
(Bostock, 2012). Furthermore, to allow researchers
and users of our package to utilize the tree infor-
mation, we include a download data button that
returns the full tree in JSON format. This JSON
file includes all nodes with their parent/child struc-
ture and events as syntactic spans or heads with
their corresponding belief values.

6 BeLeaf: Output and Visualization

In this section, we provide examples for both sen-
tence level and document level belief, alongside
their corresponding tree outputs and JSON repre-



Figure 3: Sentence level output including syntactic span
labels.

Figure 4: Document level output with a nested source
Simpson.

sentations.

Sentence Level Consider the following sentence:

Senator Ruth Simpson may achieve her
goal of limiting layoffs.

Here, the author presents multiple events:
achieve, goal, limiting, layoffs. Note that in Fact-
Bank, an event can also be a noun, which is why
goal and layoffs are included. Figure 3 shows the
tree structure and a hover-over syntactic span from
our head-to-span output.

Document Level We now expand the previous
example to show a short document level output,
including coreference and nested sources:

Senator Ruth Simpson may achieve
her goal of limiting layoffs. She
has not sponsored legislation. But
she is waging a media campaign. In
a press conference about the GM
layoffs, she estimated that about 50%
of the employees who leave for early
retirement may not be replaced. Unions
had brought the case to the Labor
Board’s highest judicial body, which
ruled in favor of the workers. She
hailed the ruling and said she would
not press anew for a trial in the case
of US Steel.

Our output is shown in Figure 4. Our system cor-
rectly coreferences the pronoun she with Senator
Ruth Simpson, tracking her presentation of events
throughout this document. Furthermore, this exam-
ple effectively visualizes the nested belief/source-
and-targetr factuality structure. For example, we
see the perspective of events leave, retirement, re-
placed, press, and trial according to both the author
and according to Senator Ruth Simpson.

Output JSON As shown in Figure 2, our system
also includeds a button to download a JSON for-
matted tree structure. Using our document level
example, we show a shortened example output:

{
"name": "AUTHOR",
"children": [

{
"name": "retirement",
"belief": "unknown",
"synSpan": "early retirement",
"children": []

},
...,
{

"name": "Simpson",
"children": [

{
"name": "retirement",
"belief": "possibly true",
"synSpan": "early retirement",
"children": []

},
...,

]
}

]
}

7 Conclusion

We propose a linearized tree generation model for
the source-and-target event factuality task predic-
tion using Flan-T5 and GPT-3. We evaluate the
model on FactBank and the MDP corpus, and
achieve results for both. With our new represen-
tation and state of the art Flan-T5 system, we
present BeLeaf, a system for both sentence and
document level factuality. We provide a prepro-
cessing pipeline that accounts for coreference to
create true document level representations of factu-
ality. An inference API is then made which feeds
to a postprocessing pipeline that creates syntactic
spans from head words for users to see the full
event contexts. Finally, we merge everything into a
tree visualization software that also includes a data
download option.



Limitations

We note that all experiments are performed on only
two English source-and-target event factuality cor-
pora. While we achieve state-of-the-art results for
English, we do not know how well our linearized
tree generation model can generalize to other lan-
guages. We will investigate multilingual source-
and-target event factuality prediction as linearized
tree generation in future work.

For our GPT-3 experiments, we only perform
one run and therefore do not report an average over
3 runs. We do this to minimize costs.

We note that these experiments do not account
for potential biases prevalent in fine-tuning large
language models. We hypothesize that for some
sources in text (i.e. power figures, authorities, or
specific names), there may be biases towards cer-
tain factuality labels. We will investigate these
biases in future work because an event factuality
prediction system with inherent bias can have real
world consequences.

Ethics Statement

These experiments do not account for potential
biases prevalent in fine-tuning large language mod-
els. In a real world deployment of our model, we
hypothesize that there could be a potential mis-
labelling of factuality values depending on bias
towards sources of utterances. For example, if a
power figure states an event, will the event label be
more biased towards being factual just because of
the source of the statement? Furthermore, are large
language models biased in predicting or failing to
predict specific nested sources? For example, are
certain groups, names, or specific sources being
ignored? Finally, how much of a role does our
new representation format contribute to bias? We
will investigate these questions and issues in future
work.

We also note that our paper is foundational re-
search and we are not tied to any direct applica-
tions.
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A Data

FactBank We split our corpus using the same
split and methods as Murzaku et al. (2022), which
also includes splitting by article. We follow a sim-
ilar evaluation setup evaluating on macro-f1 and
per-label f1. The FactBank corpus can be obtained
by researchers from the Linguistic Data Consor-
tium, catalog number LDC2009T23.

Modal Dependency Corpus We use the modal
dependency corpus from Yao et al. (2022). We
follow the same evaluation setup and procedure
evaluating on micro-f1.

Tree generation We reformat the FactBank data
for our machine learning representation. All lin-
earized trees have the author of the text as the root.
We add the special token nest to declare nestings
according to a source. We show the following ex-
ample and its linearized tree:
Input: Meteorologists say the weather will get
worse because more rains are on the way.
Tree: (Author (rains unknown) (get unknown) (say
true) (Meteorologists nest (rains true) (get true)))

B Details on Experiments

All experiments besides our GPT-3 experiments
used our employer’s GPU cluster. We performed
experiments on a Tesla V100-SXM2 GPU. Com-
pute jobs typically ranged from 30 minutes for
standard fine-tuning experiments to 50 minutes for
synthetic data generation. We do not do any hyper-
parameter search or hyperparameter tuning.

FactBank experiments We fine-tuned our mod-
els for at most 10 epochs, with early stopping being
used if the macro-F1 did not increase for 3. We
use a standard fine-tuning approach with Flan-T5-
large which has 780 million parameters. We also
experimented with Flan-T5-xl which has 3 billion
parameters, but often ran into memory issues due to
heavy GPU load. We use the Adafactor optimizer
along with a Adafactor scheduler, which dynami-
cally adapts the learning rate throughout the train-
ing process to ensure optimal model performance.
All metrics for experiments were averaged over
three runs using fixed seeds (7, 21, and 42). We
report the average over three runs and the standard
deviation over three runs.

train dev test
FactBank 8,153 2,345 1,165
MDP 21,855 2,605 2,464

Table 5: Number of examples (sum of sources and
events) in the splits for each corpus.

Modal dependency corpus experiments We
fine-tuned our models for at most 20 epochs, with
early stopping being used if the micro-F1 did not in-
crease for 20 epochs. We use a standard fine-tuning
approach with Flan-T5-large which has 780 mil-
lion parameters. We use the Adafactor optimizer
along with a Adafactor scheduler, which dynami-
cally adapts the learning rate throughout the train-
ing process to ensure optimal model performance.
All metrics for experiments were averaged over
three runs using fixed seeds (7, 21, and 42). We
report the average over three runs and the standard
deviation over three runs.

GPT-3 experiments We used a standard fine-
tuning approach using the OpenAI API. We used
a temperature of 0.0 for all experiments to select
the most likely token at each step. Because of fine-
tuning costs, we perform only one run and therefore
do not report standard deviation.

Packages To fine-tune our models and run ex-
periments, we used PyTorch lightning Falcon et al.
(2019) and the transformers library provided by
HuggingFace Wolf et al. (2019). All code for fine-
tuning, modelling, and pre-processing will be made
available.

Corpus Splits Table 5 shows the train-dev-test
splits for FactBank and the MDP corpus respec-
tively.
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